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Abstract--The classical Graetz problem with natural convection effect in isothermally cooled or heated 
horizontal tubes is approached by a numerical method using large Prandtl number assumption. 
Numerical solutions are obtained for a range of Rayleigh numbers Ra = 0-106. The developing secondary 
flow and temperature fields, bulk temperature, local and average Nusselt numbers are presented to 
study the natural convection effect. The Nusselt number results are compared against the experimental 

data and the agreement is found to be satisfactory. 
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NOMENCLATURE 

tube radius; 
Grashof number, gfl(T0 - Tw)aa/v2; 
gravitational acceleration; 
average heat-transfer coefficient; 
thermal conductivity; 
local Nusselt number, h(2a)/k; 
average Nusselt number based on 
arithmetic mean temperature difference; 
pressure deviation due to secondary flow; 
Prandtl number, v/x; 
Pl[Gr(pvZ)la2]; 
cylindrical coordinates; 
Rayleigh number, 
PrGr = g~(To-  Tw)aa/vx; 
Reynolds number, (2a) Wy/v; 
R/a, (Z/2a)/RePr, and onset point (z) of 
free convection effect (see Fig. 9), 
respectively; 
local temperature, uniform entrance 
temperature and constant wall 
temperature, respectively; 
velocity components in R, ¢ directions 
and fully developed axial velocity, 
respectively; 
(U, V)/(x/a); 
average axial velocity; 
WI/Wy = 2(1--r2); 
02/c3r 2 + (1/r)c~/c3r + (1/r2)c32/0¢2. 

Greek symbols 

r,  coefficient of thermal expansion; 
0, 0b, dimensionless temperature difference, 

( T -  Tw)/( To - Tw), dimensionless bulk 

r; temperature, (2/n) wf Or dr dc~; 
jo  

x, thermal diffusivity; 
v, kinematic viscosity; 
4, vorticity, V2~k; 
p, density; 
~k, dimensionless stream function. 

1. INTRODUCTION 

THE CLASSICAL Graetz problem [1] ~ for laminar forced 
convection in fully developed laminar flow through a 
tube with uniform wall temperature neglects the effect 
of buoyancy forces. When fluids are heated or cooled 
in forced flow through horizontal tubes o r  ducts, the 
resulting temperature differences give rise to density 
variations. Thus, the buoyancy forces always exist and 
one must assess the natural convection effects in 
practical applications [2]. 

For the case of horizontal tubes with constant wall 
temperature, the natural convection effect is important 
only in the thermal entrance region since the effect 
disappears as the bulk temperature approaches the 
wall temperature in the fully developed region. The 
experimental investigations on combined free and 
forced laminar convection in horizontal, isothermal 
tubes are well reviewed and summarized by Depew 
and August [3]. They give the empirical equation for 
average Nusselt number which correlates the published 
experimental data to within _ 40%. This suggests im- 
mediately the difficulty of the problem and the need 
for understanding the heat transport mechanism. 

Recently, Hieber and Sreenivasan [4] carried out a 
theoretical analysis for mixed convection in an iso- 
thermally heated horizontal pipe with a uniform axial 
velocity profile at the pipe inlet for a large Prandtl 
number fluid. The analysis sheds cdllsiderable light on 
heat-transfer mechanism and represents a marked im- 
provement over the existing empirical correlations [4]. 
At present, numerical analysis on combined free and 
forced laminar convection in the thermal entrance 
region of horizontal tubes or channels is possible only 
by using the large Prandtl number assumption [5-7]. 
The analysis using the Navier-Stokes and energy 
equations does not seem to have been extended to the 
technically important case of an isothermally cooled 
or heated horizontal tube. The analysis based on field 
equations provides a complete secondary flow and 
temperature fields for flow visualization. This is in 
contrast to the approximate analysis of Hieber and 
Sreenivasan [4] where one must assume five different 
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flOW regimes in the thermal entrance region. Physically, 
one may distinguish clearly the Leveque solution 
region with negligible natural convection effect, the 
intermediate region and the fully developed region with 
again negligible natural convection effect. The physical 
nature of the problem is such that further subdivisions 
of the entrance region may not be so clear-cut and 
particularly the distinction may not be possible for 
low to intermediate Rayleigh number regime. In any 
case. a simpler and direct approach is highly desirable 
in view of the complexity of the problem. 

The purpose of this paper is to present theoretical 
results of numerical analysis for Graetz problem with 
natural convection effect in horizontal, isothermal 
tubes using large Prandtl number assumption and 
Boussinesq approximation. With the present physical 
model, the main flow retains Poiseuille profile and the 
secondary flow is important only in the energy equa- 
tion. The numerical results are compared with the 
available experimental data for Prandtl number of 
order one or greater. 

The present problem is important in many industrial 
applications requiring the prediction of short-tube 
heat-transfer performance. One notes that the natural 
convection effect is also important in liquid solidifi- 
cation inside the cooled horizontal tubes with forced 
laminar flow [8, 9]. The liquid-solid interface repre- 
sents the isothermal condition and the results of the 
present analysis may be used in assessing the import- 
ance of the natural convection effect on ice formation 
in horizontal circular tubes. 

2. ANALYSIS 

The formulation of the problem is discussed else- 
where [5, 7]. 

The governing equations in cylindrical coordinates 
[see Fig. l(a)] using the dimensionless variables and 
parameters defined in Nomenclature can be shown 
to be 

/(?0 . , 1 ~ 0  \ 
V2,.,s,~ ~ = - R a |  ~. s i ne  + v" r` cos¢/ -~z J (1) 

v7,,~¢, = ~ (2) 

1 ? (ruO) + I. i~ . . . . .  w i (30 

where wf = 2(1 - r  2) and u = (1/r)80/(?4), v = -~¢/(gr .  

N-tl 
(a)  

and K. C. CliENt, 

The boundary conditions are 

0 = 1 at z = 0 (uniform entrance temperature) 

0 = 0 at r = 1 (uniform wall temperature) t4) 
= ? 0 / l ? r = 0 a t r =  1 , 0 = ~ = ? 0 / ~ q $ = 0  

along q$ = 0. ~ (symmetryL 

It is noted that the inertia terms in the vorticity 
transport equation is neglected because of large Prandtl 
number assumption. The governing equations are seen 
to be elliptic in both vorticity and stream fnnction. 
and parabolic in temperature. 

The local Nusselt number, Nu = h(2a)/k, based on 
local wall temperature gradient and axial temperature 
gradient, respectively, can be written as 

/ 
Nui  ~- -(2/TzOD [ (~?O/?r), =l d4) (5) 

# i t  (" t 

]~rt'2 : -(l'/2rC0b)do jo  ((n0/(-'z)wfrdrdq') 

In experimental investigations, the average Nusselt 
number based on arithmetic mean temperature differ- 
ence [3] is usually used. The average Nusselt number 
thus defined which corresponds to the above two 
definitions, respectively, becomes 

Nul  = - 4  (~O/dr)~=l d4)dz/[Tzz(l +Ob)] 

16) 

Nu2 = - , ((~O/¢?z)wrrdrd4)dz/[rtz(l +0b)]. 
., i 0 13 

3. NUMERICAL SOLUTION 
The parabolic-type energy equation is solved by 

applying the DuFort -Frankel  explicit method using 
the mesh sizes M x N = 4 0 × 2 4 .  Near the thermal 
entrance, the variation of the temperature field near 
the wall with the axial distance is large and a very 
small axial step Az is required for accurate solution. 
With a small Az the number of axial steps required 
to reach a fully-developed state may become prohibi- 
tively large. Thus, a continually increasing unequal 
axial step is employed to facilitate the computation. 
The axial step sizes used vary from 10 -7 near the 
entrance to 2 x 10 ~ for z > 10- l. Some details on the 
modification for unequal axial step and a starting 
procedure for the DuFort -Frankel  method are given 
in [10]. 

• Known volue 
_ _ ~  R = 0 o Unknown value + 

k- I  ! -'-~. ~ 

k÷l (b) 

k+t 
It) 

FIG. 1. Coordinate system and treatment of center point. 
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FIG. 2. Development of streamline patterns and isotherms for Ra = 5 x 104. 

In order to avoid the singularity at the origin of the 
polar coordinates, a finite-difference equation in 
Cartesian coordinate is used at the center point. 
However, a straight-forward application of the 
DuFort-Frankel  method based on central-difference 
approximation [see Fig. l(b)] for the axial derivative 
OO/Oz leads to some irregularity in temperature solu- 
tion near the center point. At a lower Rayleigh num- 
ber, the irregularity takes the form of temperature 
depression (0 < 1) at the center point near the thermal 
entrance where one knows that the temperature profile 
is still uniform (0 = 1). At a higher Rayleigh number 
the overshoot (0 > 1) of the center temperature occurs 

and persists to the downstream region. It is found that 
the irregularity eventually leads to the unstable and 
divergent solution. The difficulty can be avoided by 
using a different calculation procedure as shown in 
Fig. l(c). A centerpoint temperature is calculated by 
using the neighboring four points and a simple forward 
difference for the axial derivative ~O/~z. 

The vorticity transport equation is solved by using 
a line iterative method. The calculation proceeds with 
an initial sweep in the tangential direction followed by 
a second sweep in the opposite direction. In this study, 
the calculation is actually terminated after carrying out 
the two sweeps. To ensure a reasonable computational 
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patterns and isotherms for Ra = l0 s. 

accuracy with a maximum relative error less than 10-3 
for the vorticity, the axial step sizes are adjusted by 
carrying out the numerical experiments. 

The elliptic equation (2) for stream function is solved 
by point SOR, and new boundary vorticity values 
computed by IN+ l = 2~IN/(Ar):. The iteration for tp at 
any axial step using the relaxation factor unity found 
by numerical experiment is terminated when the error 
criterion based on the maximum relative error of 
5 x 10-4 is satisfied. The required number of iterations 
is generally less than 10 near the thermal entrance or 
in the region with considerable natural convection 
effect and only 2 or 3 for most other axial steps. The 

values of u and v are found using three-point central 
difference formula. 

The two methods of evaluating the Nusselt number 
provide a means of assessing the accuracy of the 
numerical solution. The numerical integration is per- 
formed by using Simpson's rule. The deviation of 
Nui o r  Nu2 from the average value ranges from 0.1 
to 0.5~o. The total number of axial steps and computing 
time required to reach the asymptotic state depend on 
Rayleigh number. At Ra = 5 x 104, for example, it 
takes 1688 steps to reach 0b = 0.01 and the total CPU 
time is 270 s on AMDAHL 470V/6. At Ra = l0 s, the 
total number of steps is 1490 to reach 0b = 0.015 and 
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FIG. 4. Developing temperature profiles along horizontal 
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FIG. 5. Developing temperature profiles along horizontal 

and vertical center lines for Ra = 105. 

the total CPU time is 425s. With the numerical 
method used, the computing cost becomes prohibitive 
for Ra > 106. 

It may be of some interest to point out that the 
present problem was also solved on IBM 360/67 using 
the line iterative method for the two elliptic equations 
and the AD! method of Peaceman-Rachford similar 
to those employed in [5, 7]. However, it was found 
that the oscillatory behavior for local Nusselt number 
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appears before reaching the asymptotic value (Nu~ = 
3.66) and the asymptotic solution cannot be obtained 
for Ra > 104. Excluding the numerical difficulty noted 
above, the two numerical solutions agree well for the 
range of Rayleigh numbers investigated. 

4. R E S U L T S  A N D  D I S C U S S I O N  

4.1. Secondary flow and temperature fields 
Flow visualization is possible by plotting the stream- 

line patterns and isotherms at a series of downstream 
axial positions and the results are shown in Figs. 2 and 3 
for Ra = 5 x 10 4 and 10 5, respectively. In studying the 
growth and decay of secondary flow field, it is useful 
to note that the maximum value of the stream function 
represents the intensity of the secondary motion. The 
locations of the eyes of the vortices along the axial 
positions are of special interest. Near the thermal 
entrance say, z < 5 x 10- 4, the isothermals are concen- 
tric circles and the gradual distortion of the isotherms 
near the lower region occurs further downstream. In 
the lower region, the cooler liquid near the wall is 
constantly transported downward and the isotherhas 
are sparsely spaced indicating poor wall heat-transfer. 
On the other hand, near the top of the tube, the 
warmer liquid in the core region is continually trans- 
ported upward and the isotherms are closely spaced 
indicating large local wall heat flux. The development 
ofisothermals along the downstream positions is quali- 
tatively similar to that in the thermal entrance region 
of curved pipes with uniform wall temperature [11, 12]. 
In this respect, the development of the isotherms is 
also somewhat similar to that in transient natural con- 
vection in horizontal cylinders with constant cooling 
rate [-10]. The stratification of the flow field in the 
core region with a vertical temperature gradient at 
axial position near z = 10 -2 is of interest. 

The developing temperature profiles along ~b = 0, rc 
and re/2 are shown in Figs. 4 and 5 for Ra = 5 × 103 
and 105 , respectively, where the curve labelled "7" 
may be regarded to be a fully developed profile. The 
secondary velocity profiles for v(a), and u(b) both 
along the horizontal axis and the distribution of u(c) 
along the vertical axis are shown in Fig. 6 for the case 
of Ra = 105 in order to further study the developing 
flow fields. In Fig. 6(a) and (c), the increase and sub- 
sequent decrease of the secondary velocity component 
along the axial position can be seen dearly. In Fig. 6(b), 
the direction of the velocity component u at the far 
downstream position is seen to be completely opposite 
to that near the thermal entrance. It is seen that at 
z = 10-1, the secondary flow is quite weak. 

The effects of Rayleigh number on the axial dis- 
tribution of bulk temperature 0b and local Nusselt 
number based on the average value of Nu~ and Nu~ 
are shown in Figs. 7 and 8, respectively. For the special 
limiting case where the fluid is cooled (or heated) nearly 
to the constant temperature of the tube wall, one 
obtains the equation of the asymptote N u  a = h,(2a)/k = 
1/(2z) based on the arithmetic temperature difference 
(To - Tw)/2, [13]. The asymptote Nu,, is also plotted on 
Fig. 7 and it is clear that without the free convection 
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FIG. 6. Development of secondary velocity profiles along 
horizontal and vertical axes for Ra = 105. 

effect the curve for Nu, represents an upper bound and 
the classical Graetz solution Ra = 0 is a lower bound. 
The bulk temperature 0b at the axial position where 
the curves for Nu and Nu, intersect is also marked in 
Fig. 7 as a solid circle and the numerical value for Oh 
is found to be less than 0.08. In practical applications, 
one may not be concerned with the natural convection 
effect in the region with 0r < 0.05 since the effect 
vanishes as Tb --, T,,. 
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Near the thermal entrance, the natural convection 
effect is negligible and the Leveque solution applies. 
One notes that the axial velocity retains a Poiseuille 
profile in the whole entrance region because of large 
Prandtl number assumption. Thus, a deviation from 
the Leveque solution occurs at a certain downstream 
position depending on Rayleigh number when the con- 
vective terms due to secondary flow in energy equation 
(3) become significant relative to the axial convective 
term. The numerical results dearly exhibit the existence 
of a local minimum value for Nu which may signify the 
balance between the entrance effect due to the axial 
convective term and the secondary flow effect due to 
the transverse convective terms, After reaching a local 
maximum value, the limiting value of Nu~ = 3.66 is 
approached asymptotically. At Ra = 5 x 105 and 106, 
the numerical solutions are terminated before reaching 
the region where Nu decreases monotonically. Because 
of computing cost, it is impractical to continue the 
computation further downstream at higher Rayleigh 
numbers. 

Some experimental data from Oliver [14], Depew 
and Zenter [9], and Depew and August [3] are also 
plotted in Fig. 8 with the approximate range of Rayleigh 
and Prandtl numbers indicated for comparison. For 

' ~ ' ' ' ' 1  , ' ' ' " '  ' ' ' ' 1  ' ' ' ' ' ' ' ~ l  t 

. . . .  I , J , D , ,~ ,1  1°5 J ~ N N ~ N ~ ~ ' ~  ! 
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Z 

FIG. 7. Rayleigh number effect on axial bulk temperature variation. 
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the case Ra = I0 s, the average Nusselt number based 
on the arithmetic mean temperature difference used in 
experimental investigations [3] is also calculated and 
the results are shown as a dash-line to facilitate direct 
comparison with experimental data. Considering the 
scatter of experimental data, the agreement between 
theory and experiment for Ra = l0 s can be said to be 
satisfactory. The calculated average Nusselt number 
based on arithmetic mean temperature difference from 
Graetz solution (Ra = 0) is also shown in Fig. 8. It is 
clearly seen that the experimental data are bracketed 
between the Graetz solution and the asymptote 

i ~ l l l l [  i i i i i r l | [  i 

X 
i0 ~ 

o o 

1o 5 

io  4 ~ Numericol cloto " ~  

2 x l O  - 5  I0 -4 i0-3 
z o 

FIG. 9, Correlation for the onset of frec convection effect 
based on 2~ deviation of Nu from that of Graetz solution 

(Ra = o). 

Nuo = 1/(2z) [13]. It is of interest to note that the 
average Nusselt number based on arithmetic mean 
temperature difference approaches the asymptote 
Nu, = (1/2z) at z -~ 10 -2. Furthermore, one notes that 
the average Nusselt number based on (To - Tw)/2, [13], 
and that based on the average mean temperature 
difference [(To-Tw)+(Tb-Tw)]/2, [3], approach to 
each other as Tb ~ Tw at z ~ oo. 

The deviation of local Nusselt number from Graetz 
solution is of practical interest and the correlation 
equation for the prediction on the onset point of free 
convection effect based on 2% deviation of the local 
Nussett number from that of the Graetz solution 
(Ra = 0) is given in Fig. 9 together with the numerical 
data. From Figs. 8 and 9, it is seen that the free 
convection effect is significant practically only for the 
range Zo ~< z < 2 x 10-2. Considering the above obser- 
vation and the local Nusselt number behavior, one can 
understand the difficulty in obtaining the correlation 
equations for heat transfer [3]. 

5. C O N C L U D I N G  REMARKS 

The numerical solution is obtained for the Graetz 
problem with natural convection effect for Rayleigh 
number up to Ra = l0 s. The problem is qualitatively 
similar to the Graetz problem in curved pipes with 
constant wall temperature [11, 12]. However, in the 
latter case the secondary flow is caused by centrifugal 
forces and an asymptotic value for local Nusselt num- 
ber exists for a given Dean number. In contrast, for 
the present problem only one asymptotic value 
Nu® = 3.66 exists for all Rayleigh numbers. 

The numerical solution yields detailed streamline 
patterns and isotherms readily for flow visualization. 
The free convection effects are known to be significant 
in a technically important problem, of liquid solidi- 
fication inside a cooled horizontal pipe with forced 
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laminar flow [8]. Since the boundary conditions are 
similar, the present numerical results provide some 
insight and guide in assessing the significance of the 
free convection effect. 

A direct comparison between the present Nusselt 
number results and those of Hieber and Sreenivasan 

[4] is not possible since the latter work assumes a 
uniform axial velocity profile at the thermal entrance 
and in addition the local Nusselt number is based on 

(Tw-T~). Nevertheless, the two results are seen to 
agree qualitatively and show similar trend. 

The present problem is one of the basic convective 
heat-transfer problems and the assumption of large 
Prandtl  number is practically applicable to Prandtl  
number greater than order one. 

Acknowledgement--This work was supported by the 
National Research Council of Canada (Grant NRC A 16551. 

REFERENCES 

1. M. Jakob, Heat Tran,ffer, Vol. 1, p. 451. John Wiley, 
New York (1959). 

2. E. R. G. Eckert and A. J. Diaguila, Convective heat 
transfer for mixed, free, and forced flow through tubes, 
Trans. Am. Soc. Mech. Engrs 76, 497-504 (1954). 

3. C. A. Depew and S. E. August, Heat transfer due to 
combined free and forced convection in a horizontal 
and isothermal tube, J. Heat TransJer 93, 380 384 
(1971). 

4. C. A. Hieber and S. K. Sreenivasan, Mixed convection 
in an isothermally heated horizontal pipe, lnt, J. Heat 
Mass Transfer 17, 1337- 1348 (1974). 

and K. C. CHANG 

5. J. W. Ou, K. C. Cheng and R. C. Lin, Natural con- 
vection effects on Graetz problem in horizontal rect- 
angular channels with uniform wall temperature for 
large Pr, Int. g. Heat Mass Transfer 17, 835 843 (1974). 

6. S.W. Hong, S. M. Morcos and A. E. Bergles, Analyticai 
and experimental results for combined forced and free 
laminar convection in horizontal tubes, in Proceedin,q.~ 
of  the Fifth International Heat Transfi~r ('on[~re~we. 
NC 4.6, Tokyo (1974}. 

7. K. C. Cheng and J. W. Ou, Free convection effects (m 
Graetz problem for large Prandtl number fluids it: 
horizontal tubes with uniform wall heat flux, in 
Proceedings of  the Fifth International Heat Tran.~l~'r' 
Conference, NC 4.7, Tokyo (1974). 

8. R. D. Zerkle and J. E. Sunderland, Thc effect of liquid 
solidification in a tube upon laminar-flow heat transfer 
and pressure drop, J. Heat Transfer 90C, 183 190 (1968). 

9. C. A. Depew and R. C. Zenter. Laminar flow heal 
transfer and pressure drop with freezing at the wall, 
Int. J. Heat Mass Transfer 12, 1710 1714(1969/. 

10. M. Takeuchi and K. C. Cheng, Transient natural con- 
vection in horizontal cylinders with constant cooling 
rate, Wiirme- and Stoffiibertragung 9, 215-225 (1976!. 

11. J. M. Tarbell and M. R. Samuels, Momentum and heat 
transfer in helical coils, Chem. Engng .11 5. 117 127 
(1973). 

12. M. Akiyama and K. C. Cheng, Laminar forced convec- 
tion in the thermal entrance region of curved pipes 
with uniform wall temperature, Can..I. Chem. Engng 52, 
234--240 (1974). 

13. W. H. McAdams, Heat Transmission, p. 232. McGraw- 
Hill, New York (1954). 

14. D.R. Oliver, The effect of natural convection on viscous- 
flow heat transfer in horizontal tubes, Chem. Engng Sci. 
17, 335--350 (1962). 

EFFETS DE LA CONVECTIQN NATURELLE SUR LE PROBLEME DE GRAETZ 
POUR LES TUBES HORIZONTAUX ET ISOTHERMES 

R~sum~--Le probl~me classique de Graetz avec effet de convection naturelle, dans des tubes horizontaux 
ehauff~s on reffoidis, est approch6 par une m6thode num6rique dans une hypoth6se large de nombres 
de Prandtl. Des solutions num6riques sont obtenues pour une gamme de nombre de Rayleigh 
Ra = 0 ~ 10 6. Pour 6tudier l'effet de la convection naturelle, on pr6sente l'6coulement secondaire, le 
champ de temp6rature, la temp6rature moyenne, les nombres de Nusselt sont compar6s aux donn6es 

exp6rimentales et l'accord est trouv6 satisfaisant. 

DIE AUSWIRKUNG DER FREIEN KONVEKTION AUF DAS GRAETZ-PROBLEM 
FOR HORIZONTALE ISOTHERME ROHRE 

Zusammenfassung--Das klassische Graetz-Problem in isothermen, gekiihlten oder beheizten horizontalen 
Rohren wird unter Berticksichtigung der freien Konvektion fiir groBe Prandtl-Zahlen und ftir 0 < Ra < 10 ~" 
numerisch gel~Sst. Zur Untersuchung des Einflusses der freien Konvektion werden die sich ausbildenden 
Sekund~irstr~Smungen, die Temperaturfelder, die mittlere Temperatur sowie die brtlichen und mittleren 
Nusselt-Zahlen angegeben. Die errechneten Nusselt-Zahlen werden mit Versuchsergebnissen verglichen, 

wobei sich befriedigende Obereinstimmung ergibt. 

D ~ E K T b l  ECTECTBEHHOITI KOHBEKUHH B FOPH3OHTAYlBHblX 
HBOTEPMIdqECKHX TPYBAX B 3 A ~ A q E  FPETUA 

AmloTallM~t- LIHCJ'leHHO pemaeTc~ KJ~accnsecKaa 3a~a~a FpeTtta no eCTeCTBeHHO~I KOHBeKIAI4H B 
H3oTepMHqeCKH oxYla~teHHblx H~H HarpeTblX FODH3OHTa.qbHBIX Tpy6ax n HDH6JIHYtCeHHH 6onbmoro 
qncna l'IpaH/ITJla. LIHCJ'IeHHble pemeHua noJay,~eHbl /1.qa qnceJ1 Penea u 11nana3one R a =  0 ~ 106. 
l-[pn HccJ1ejloaanarl 30d~eKTa eeTecTBenno~ KonBeKttnH pacCMaTpHBa~qUCb pa3BnBaK)meeca Bxopnq- 
Hoe Te~enrle n TeMnepaTypnbte noun, cpejlna~ MaccoBaa TenMepaTypa, aoKaJn, m,te H cpeImne ~Hc,aa 
Hycceabra. PacqeTnble 3Ha~eHn~ qHcrla HyceeJxbTa y/1OBJqeTaOpHTeJ/bnO coraacymxca c 3KcHepH- 

MeHTaJIbHblMH /laHHB1MIt. 


